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Abstract

Public health efforts to determine population infection rates from coronavirus disease
2019 (COVID-19) have been hampered by limitations in testing capabilities and the
large shares of mild and asymptomatic cases. We adapted a sample selection model that
corrects for non-random testing to estimate population infection rates. The method-
ology compares how the observed positive case rate vary with changes in the size of
the tested population, and applies this gradient to infer total population infection
rates. Model identification requires that variation in testing rates be uncorrelated with
changes in underlying disease prevalence. To this end, we relied on data on day-to-day
changes in completed tests across U.S. states for the period March 31 to April 7, which
were primarily influenced by immediate supply-side constraints. We used this method-
ology to construct predicted infection rates for each state over the sample period. The
results suggest widespread undiagnosed COVID-19 infection. Nationwide, we found
that for every identified case there were 12 total infections in the population.
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1 Introduction

In December 2019, several clusters of pneumonia cases were reported in the Chinese

city of Wuhan. By early January, Chinese scientists had isolated a novel coronavirus

(SARS-CoV-2), later named coronavirus disease 2019 (COVID-19), for which a lab-

oratory test was quickly developed. Despite efforts at containment through travel

restrictions, the virus spread rapidly beyond mainland China. By April 7, more than

1.4 million cases had been reported in 182 countries and regions.

Our understanding of the progression and severity of the outbreak has been limited

by constraints on testing capabilities. In most countries, testing has been limited to

a small fraction of the population. As a result, the number of confirmed positive

cases may grossly understate the population infection rate, given the large numbers

of mild and asymptomatic cases that may go untested [1–5]. Moreover, testing has

often been targeted to specific subgroups, such as individuals who were symptomatic

or who were previously exposed to the virus, whose infection probability differs from

that in the overall population [6, 7].1 Given this sample selection bias, it is impossible

to infer overall disease prevalence from the share of positive cases among the tested

individuals.

A further challenge to our understanding of the spread of outbreak has been the

wide variation in per capita testing across jurisdictions due to different protocols and

testing capabilities. For example, as of April 7, South Korea had conducted three times

more tests than the United States on a per capita basis [8,9]. Large differences in testing

rates also exist at the subnational level. For example, per capita testing in the state

of New York was nearly two times higher than in neighboring New Jersey [8]. Because

the severity of sample selection bias depends on the extent of testing, these disparities

1Notable exceptions include the universal testing of passengers on the Diamond Princess cruise
ship, and an ongoing population-based test project in Iceland.
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create large uncertainty regarding the relative disease prevalence across jurisdictions,

and may contribute to the wide differences in estimated case fatality rates [10,11].

In this study, we implemented a procedure that corrects observed infection rates

among tested individuals for non-random sampling to calculate population disease

prevalence. A large body of empirical work in economics has been devoted to the

problem of sample selection and researchers have developed estimation procedures to

correct for non-random sampling [12–17]. Our methodology builds on these insights to

correct observed infection rates for non-random selection into COVID-19 testing.

Our procedure compares how the observed infection rate varied as a larger share

of the population was tested, and uses this gradient to infer disease prevalence in the

overall population. Because investments in testing capacity may respond endogenously

to local disease conditions, however, model identification requires that we find a source

of variation in testing rates COVID-19 that is unrelated to the underlying population

prevalence. To this end, we relied on high frequency day-to-day changes in completed

tests across U.S. states, which were primarily driven by immediate supply-side limita-

tions rather than the more gradual evolution of local disease prevalence. We used this

procedure to correct for selection bias in observed infection rates to calculate population

disease prevalence across U.S. states from March 31 to April 7.

2 Methodology

2.1 Theory

To evaluate population disease prevalence, we developed a simple selection model

for COVID-19 testing and used the framework to link observed rates of positive tests to

population disease prevalence. We considered a stable population, normalized to size

one, denoting A and B as the numbers of sick and healthy individuals, respectively.
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Let pn denote the probability that a sick person is tested and qn the probability that

a healthy person is tested, given a total number of tests, n. Thus, we have:

n = pnA+ qnB,

and the number of positive tests is:

s = pnA.

This simple framework highlights how non-random testing will bias estimates of the

population disease prevalence. Using Bayes’ rule, we can write the relative probability

of testing as the following:

qn
pn

=
Pr(sick|n)/Pr(healthy|n)

Pr(sick|tested, n)/Pr(healthy|tested, n)
,

which is equal to one if tests are randomly allocated, Pr(sick|tested, n) = Pr(sick|n).

When testing is targeted to individuals who are more likely to be sick, we have

Pr(sick|tested, n) > Pr(sick|n) and Pr(healthy|tested, n) < Pr(healthy|n), so the

ratio will fall between zero and one. In this scenario, the ratio of sick to healthy people

in the sample, pnA
/
qnB, will exceed the ratio in the overall population, A

/
B.

We specified the following functional form for the relative probability of testing:

qn
pn

=
1

1 + e−a−bn
(1)

The term e−a−bn > 0 reflects the fact that testing has been targeted towards higher risk

populations, with the intercept, −a, capturing the severity of selection bias when test-

ing is limited. Meanwhile, the coefficient b > 0 identifies how selection bias decreases
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with n as the ratio qn/pn approaches one. Intuitively, as testing expands, the sample

will become more representative of the overall population, and the selection bias will

diminish.

Combining both equations, we have:

log
s

n
= − log

(
1 +

1

1 + e−a−bn
B

A

)
.

We used the fact that the ratio of negative to positive tests is much larger than one –

median ratio of negative to positive tests is 7.3 to 1 – to make the following approxi-

mation:2

log
s

n
≈ − log

(
1

1 + e−a−bn
B

A

)
≈ log

(
1 + e−a−bn

)
− log

B

A

≈
M∑
k=1

(−1)k−1e−ka

k
e−kbn − log

B

A
(2)

Where the last line in equation (2) was obtained based on a power series approximation

of the natural logarithmic function. Given a change in the number of tests conducted

in a particular population, n1 to n2, equation (2) implies the following change in the

share of positive tests:

log
s2

n2

− log
s1

n1

≈
M∑
k=1

(−1)k−1e−ka

k

(
e−kbn2 − e−kbn1

)
(3)

2In the empirical analysis, we assess the sensitivity of the results to this approximation.
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2.2 Model Estimation and Identification

Our empirical model was derived from equation (3). We used information on testing

across states i on day t to estimate the following equation:

log
si,t
ni,t
− log

si,t−1

ni,t−1

= α1

[
e
β

ni,t
popi − eβ

ni,t−1
popi

]
+ α2

[
e

2β
ni,t
popi − e2β

ni,t−1
popi

]
+ α3

[
e

3β
ni,t
popi − e3β

ni,t−1
popi

]
+ ui,t (4)

where ni,t is the number of tests on day t, si,t is the number of positive tests, and popi is

the state population. The term ui,t is an error which we assumed to follow a Gaussian

distribution with mean zero and unknown variance. We restricted the model to a cubic

approximation of the function in equation (4), since higher order terms were found to

be statistically insignificant. This approximation is supported by graphical evidence

depicted below. We estimated equation (4) by nonlinear least squares, allowing for

heteroskedastic errors.

For model identification, we required that day-to-day changes in the number of tests

be uncorrelated with the error term, ui,t. In practice, this assumption implies that daily

changes in underlying population disease prevalence cannot be systematically related

to day-to-day changes in testing. Our identification assumption is supported by at least

three pieces of evidence. First, severe constraints on state testing capacity have caused

a significant backlog in cases, so that changes in the number of daily tests primarily

reflects changes in local capacity rather than changes in demand for testing. Second,

because our analysis focuses on high frequency day-to-day changes in outcomes, there is

limited scope for large evolution in underlying disease prevalence. Finally, in robustness

exercises, we augmented the basic model to include state fixed effects, thereby allowing

for state-specific exponential growth in underlying disease prevalence from one day to

the next. These additional controls did not alter the main empirical findings.
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To recover estimates of population infection rates, P̂i,t, in state i at date t, we

combined the estimates from equation (4) and set n = popi according to the following

equation:

P̂i,t = exp

{
log(si,t) +

3∑
1

α̂k

(
ekβ̂ − ekβ̂

ni,t
popi

)}
(5)

We then used the Delta-method to estimate the confidence interval for P̂i,t.

2.3 Data

The analysis was based on daily information on total tests results (positive plus

negative) and total positive test results across U.S. states for the period March 31

to April 7. These data were obtained from the COVID Tracking Project, a site that

was launched by journalists from The Atlantic to publish high-quality data on the

outbreak in the United Stated [8]. The data were originally compiled primarily from

state public health authorities, occasionally supplemented by information from news

reporting, official press conferences, or message from officials released on facebook or

twitter. We focused on the recent period to limit errors associated with previous

changes in state reporting practices. We supplemented this information with data on

total state population from the census [18].

3 Results

3.1 Population COVID-19 Infection Rates by State

Table A.1 (Model 1) reports the estimated coefficients from equation (4). Model 2

and Model 3 present the estimation results from models with state fixed effects (Model

2), and for the subsample of state-day observations with a positive test ratio smaller

than 0.5 (Model 3).
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Figure 1 depicts the relationship between daily changes in the positive test rate and

per capita testing, based on the relationship implied by equation (4), estimated across

states for the period March 31 to April 7. Because β̂ is negative, the upward sloping

pattern implies a negative relationship between daily changes in testing and the share

of positive tests. A symptom of selection bias is that variables that have no structural

relationship with the dependent variable may appear to be significant [13]. Thus, these

patterns strongly suggest non-random testing, since daily changes in testing should be

unrelated to population disease prevalence except through a selection channel.3

Table 1 reports the results that adjust observed COVID-19 case rates for non-

random testing based on the procedure described in Section 2. For reference, column

(1) reports the observed positive test rate on April 7, 2020. Columns (2) and (3) report

the adjusted rates for April 7 along with 95 percent confidence interval. The results

suggest widespread undiagnosed cases of COVID-19. Estimated population prevalence

ranged from 0.3 percent in Wyoming to 7.6 percent in New Jersey. To put these

estimates in perspective, in New York state, which had conducted the most extensive

testing in the nation, 0.7 percent of the population had tested positive for COVID-19

by April 7. Our estimates imply that 34 states had population case rates that exceeded

the observed prevalence in New York.

Table 1, col. (4) reports the average estimated population prevalence for the period

March 31 to April 7. These averages mitigate sampling error in the daily prevalence

estimates, which depend on the observed share of positive tests on any particular day.

The average estimates are similar to the April 7 estimates, albeit generally smaller in

magnitude, suggesting continued spread of the disease in many states.

In Table 2, we examined the robustness of the main estimates. To begin, we esti-

3To the extent that day-to-day changes in testing responded endogenously to changes in disease
prevalence, we might actually expect this relationship to be positive. In this scenario, our estimates
should be interpreted as a lower bound for sample selection bias.
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mated modified versions of equation (4) that include state fixed effects. These models

allow for an exponential trend in infection rates, thereby addressing concerns that un-

derlying disease prevalence may evolve from one day to the next. We allowed each

state to have its own specific intercept to capture the fact that the trends may differ

depending on the local conditions. The results (reported in cols. 2 and 7) are virtually

identical to the baseline estimates. Moreover, the augmented model tends to produce

more precise confidence intervals.

We explored the sensitivity of the results to excluding days in which a large fraction

of tests were positive. This specification addresses concerns that the functional form of

the estimating equation may differ in settings in which the share of positive was large,

due to the approximation in equation (2). We restricted the sample to observations

in which fewer than 50% of tests were positive, and re-estimated equation (4). Table

3, cols. 5,6,9 report the results. Although the sample size is reduced, the predicted

infection rates are similar in magnitude to the baseline estimates and have similar

confidence intervals.

3.2 Population COVID-19 Infection Rates and Serological

Testing

We compared our COVID-19 prevalence estimates to the results from existing

population-based testing for seroprevalence for SARS-CoV-2 antibodies. Serological

testing has been conducted in several U.S. jurisdictions, so these comparison provides

an external validation of our methodology. There are several limitations to these com-

parisons. First, our prevalence estimates reflect only individuals who are currently

infected with the virus, and not individuals who have antibodies from resolved infec-

tions. Thus our estimates will underestimate the population prevalence rates found
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in serological testing. Second, existing serological testing has been limited to specific

localities whose infection rates may differ state-level prevalence. To improve the com-

parability, we also report state-level prevalence estimates that were adjusted to match

the population density of the sampled jurisdictions.4

Table 3, col. (1) reports the estimates of population COVID-19 prevalence based

on serological testing.5 Although the methodologies for data collection differ across

the various studies, the broad patterns indicate widespread undetected COVID-19

infection.

Table 3, cols. (2)-(3) report the estimated population prevalence based on the

methodology described in section 2. Column (2) reports the raw estimates for April

11; column (3) reports the estimates after adjusting population density to match the

sampled county. Excluding the outlier results for Chelsea, our adjusted prevalence

estimates are roughly 40 to 60 smaller than those reported in column (1). Given

the large number of infections that occurred through mid-March which would not be

captured by our measure of current infection, these estimates are remarkably similar.

3.3 Population COVID-19 Infection Rates and State Testing

In Table 4, we explored the relationship between the number of diagnosed cases

and total population COVID-19 infections implied by our estimation procedure. We

compared the average population infection rates from March 31 to April 7 to the total

number of diagnosed cases by April 12. Because many individuals may not seek testing

4Specifically, we estimated a bivariate regression of state-level prevalence estimate, P̂i, on the log
population density of the median county, densityi, and applied the estimate to adjust to density of
the relevant sampled county c in state i according to: P̂c,i = P̂i + β̂(densityc,i − densityi).

5Prevalence estimates for Los Angeles and Santa Clara counties were derived from samples of 846
and 3,330 participants recruited through Facebook ads, with estimates adjusted for zip code, sex,
and race/ethnicity. Prevalence estimates for San Miguel county were derived from a sample of 986
tests. Prevalence estimates for NY were based on PCR tests for current infection among all pregnant
women who delivered from March 22 to April 4. Estimates for Chelsea were based on serological tests
collected on the street corner for 200 residents.
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until the onset of symptoms, the latter date was chosen to capture the virus’s typical

five day incubation period [19, 20]. Column (1) reports the total diagnosed cases by

April 12; column (2) reports the total number of COVID-19 cases implied by the

estimates reported in Table 2 (col. 4); and column (3) presents the ratio of total cases

to diagnosed cases.

The results reveal widespread undetected population infection. Nationwide, we

found that for every identified case there were 12 total infections in the population.

There were significant cross-state differences in these ratios. In New York, where more

than two percent of the population had been tested, the ratio of total cases to positive

diagnoses was 8.7, the lowest in the nation. Meanwhile, Oklahoma had the highest

ratio in the country (19.4), and tested less than 0.6 percent of its population.

Figure 2a presents a bivariate scatter plot between the ratio of total COVID-19 cases

per diagnosis and cumulative per capita testing by April 12. The negative relationship

(corr = -0.51) indicates that relative differences in state testing do not simply reflect a

response to geographic differences in pandemic severity. Instead, the patterns suggest

that states that expanded testing capacity more broadly were better able to track

population prevalence.

Figure 2b documents a positive relationship between per capita COVID-19 diag-

noses and population prevalence. The similarity between these two series is notable,

given that our estimates were derived from an entirely different source of variation

from the cumulative case counts. Nevertheless, observed case counts do not perfectly

predict overall population prevalence. For example, despite similar rates of reported

positive tests, Michigan had roughly twice as many per capita infections as Rhode

Island. These differences can partly be explained by the fact that nearly two percent

of the population in Rhode Island had been tested by April 12, whereas fewer than one

percent had been tested in Michigan. Together, these findings suggest that differences
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in state-level policies towards COVID-19 testing may mask important differences in

underlying disease prevalence.

4 Discussion

The high proportion of asymptomatic and mild cases coupled with limitations in

laboratory testing capacity has created large uncertainty regarding the extent of the

COVID-19 outbreak among the general population. As a result, key elements of virus’

clinical and epidemiological characteristics remain poorly understood. This uncertainty

has also created significant challenges to policymakers who must trade off the potential

benefits from non-pharmaceutical interventions aimed at curbing local transmission

against their substantial economic and social costs.

A number of recent studies have sought to estimate COVID-19 disease prevalence

and mortality in the United States and internationally [21–26]. One approach has

been based on variants of the Susceptible Infectious Removed (SIR) model, in which

parameters are “calibrated” to the specific characteristics of the SARS-CoV-2 pandemic

to estimate current and future infections. A challenge for this approach is the large

uncertainty regarding the relevant parameter values for the virus, and the fact that the

parameter values will evolve as societies take different measures to reduce transmission.

Other research has relied on Bayesian modelling to infer past disease prevalence from

observed COVID-19 deaths, and apply SIR models to forecast current infection rates.

This approach requires fewer assumptions regarding the underlying parameter values.

Nevertheless, because these models ‘scale up’ observed deaths to estimate population

infections, small differences in the assumed case fatality will have substantial effects

on the results. This poses a challenge for estimation, given that there is considerable

uncertainty regarding the case fatality rate, which may vary widely across regions due to
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local demographics and environmental conditions [27–31]. Moreover, to the extent that

there is significant undercounting in the number of COVID-19 related deaths [32, 33],

these estimates may fail to capture the full extent of population infection.

In this paper, we developed a new methodology to estimate population disease

prevalence when testing is non-random. Our approach builds on a standard econo-

metric technique that have been used to address sample selection bias in a variety of

different settings. Our estimation strategy offers several advantages over existing meth-

ods. First, the analysis has minimal data requirements. The three variables used for

estimation – daily infections, daily number of tests, and total population – are widely

reported across a large number of countries and subnational districts. Second, the

model identification is transparent and depends only on a simple exclusion restriction

assumption that daily changes in the number of conducted tests must be uncorrelated

with underlying changes in population disease prevalence. This assumption is likely to

hold in many jurisdictions where constraints on capacity are a primary determinant of

testing.

We used this framework to estimate disease prevalence across U.S. states. We

estimated substantial population infection that exceeded the observed rates of positive

tests by factors of 8 to 19. These results are consistent with recent evidence suggesting

that there may be widespread undetected infection across many regions of the U.S. [26].

Our findings are comparable to previous studies on U.S. population prevalence that

find ratios of population infection to positive tests ranging from 5 to 10 by mid-March

[22, 25]. Despite a dramatic expansions in testing capacity in the intervening weeks,

the vast majority of COVID-19 cases remain undetected.

Our results are comparable to recent estimates of population prevalence in a number

of European countries [21]. We found a nationwide 1.9 percent infection rate in early

April, which is similar to the estimated prevalence in Austria (1.1%), Denmark (1.1%),
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and the United Kingdom (2.7%) as of March 28. Meanwhile, Germany’s 0.7% infection

rate would rank in the lowest tercile of prevalence among U.S. states. The highest rates

of infection in New York (8.5%), New Jersey (7.6%), and Louisiana (6.7%) are still lower

than the estimated rates in Italy (9.8%) and Spain (15%). Given the rapidly expanding

availability of high frequency testing data at both the national and subnational level,

in future research we plan to apply this methodology to compare infection rates across

a broader spectrum of countries.

There are several limitations to our study, which should be taken into account when

interpreting the main findings. First, the estimation results depend on several func-

tional form assumptions including a constant exponential growth rate in new infections

and the specific functions governing how the number of available tests affect individual

testing probability. As more data on testing become available, the increased sample

sizes will allow future studies to impose weaker functional form assumptions through

either semi- or non-parametric approaches. Second, our analysis required an assump-

tion that the underlying sample selection process was similar across observations. To

the extent that decisions regarding who to test, conditional on the number of available

tests, diverged across states or changed within states over the sample period, our model

may be misspecified. Finally, our analysis depends on the quality of diagnostic testing,

and systematic false negative test results may affect the population disease prevalence

estimates [34–36].6

As countries continue to struggle against the ongoing coronavirus pandemic, in-

formed policymaking will depend crucially on timely information on infection rates

across different regions. Randomized population-based testing can provide this infor-

mation, however, given the constraints on supplies, this approach has largely been

eschewed in favor of targeted testing towards high risk groups. In this paper, we

6Provided that the rates of misdiagnosis were unrelated to the number of tests, these errors will
not bias the coefficient estimates, but may reduce precision through classical measurement error [37].
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developed a new approach to estimate population disease prevalence when testing is

non-random. The estimation procedure is straightforward, has few data requirements,

and can be used to estimate disease prevalence at various jurisdictional levels.
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Tables and Figures

Figure 1: Daily Changes in Testing and the Share of Positive Cases
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Notes: This figure reports the relationship between daily changes in the exponential of per capita
testing and daily changes in the log share of positive tests, using the coefficient of β derived from
the main estimates of equation (4).
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Figure 2: Testing and Population COVID-19 Infection Rates across States

(a) Per Capita Testing and Total COVID-19 Cases per Diagnosis

(b) Diagnosed Cases and Total COVID-19 Cases

Notes: (a) This figure presents the bivariate relationship between per capita testing and the ratio of total COVID-19
cases per diagnosis. Tests per 1,000 population are based on the cumulative number of tests by April 12. The ratio
is the total number of COVID-19 cases, derived from the average estimated population prevalence from March 31
to April 7, divided by the cumulative number of positive tests by April 12. (b) This figure presents the bivariate
relationship between log positive tests per capita and log total COVID-19 cases per capita. Positive tests per 1,000
population are based on the cumulative number of positive tests by April 12. The total number of COVID-19 cases
is derived from the average estimated population prevalence from March 31 to April 7.



Table 1: Estimated Population Infection Rates for COVID-19

State Positive Estimated 95% Ave. Estimated
Tests Population Prevalence Confidence Interval Population Prevalence,

on April 7 on April 7 March 31 - April 7
(%) (%) (%)

(1) (2) (3) (4)
AK 73.3 0.9 [0.5, 1.8] 0.4
AL* 10.2 1.0 [0.5, 2.1] 0.9
AR 9.0 0.7 [0.3, 1.5] 0.5
AZ 14.1 0.4 [0.2, 0.9] 0.6
CA 11.1 1.1 [0.5, 2.3] 0.9
CO 20.1 1.1 [0.5, 2.4] 1.8
CT 37.2 5.0 [2.4, 10.6] 4.2
DC 30.8 3.8 [1.8, 7.9] 3.0
DE** 15.2 1.9 [0.9, 3.9] 1.5
FL 9.6 1.3 [0.6, 2.8] 1.3
GA 61.7 4.2 [1.9, 9.1] 2.0
HI* 3.5 0.4 [0.2, 0.8] 0.4
IA 9.1 0.9 [0.4, 1.9] 0.7
ID 27.5 1.1 [0.5, 2.3] 1.5
IL 22.2 2.6 [1.2, 5.3] 2.3
IN 21.9 2.3 [1.1, 4.8] 1.9
KS 12.8 0.5 [0.2, 1.1] 0.7
KY 4.5 0.3 [0.2, 0.8] 0.4
LA 25.8 5.7 [2.5, 12.9] 6.7
MA 27.8 3.9 [1.8, 8.3] 3.4
MD 16.2 1.5 [0.7, 3.3] 1.7
ME*** 1.0 0.5 [0.3, 0.9] 0.5
MI 56.8 5.1 [2.4, 10.8] 4.4
MN 7.3 0.4 [0.2, 0.9] 0.3
MO 14.8 1.4 [0.7, 3.1] 1.1
MS* 0.8 0.7 [0.7, 0.8] 1.1
MT 10.3 0.5 [0.2, 1.2] 0.5
NC 98.6 1.1 [0.6, 2.2] 0.6
ND 2.4 0.3 [0.2, 0.7] 0.5
NE 8.1 0.6 [0.3, 1.3] 0.6
NH 12.6 1.0 [0.5, 2.1] 1.2
NJ 56.0 7.6 [3.6, 16.1] 7.6
NM 2.3 0.6 [0.3, 1.3] 0.7
NV 13.3 1.2 [0.6, 2.6] 1.2
NY 42.5 7.5 [3.3, 17.1] 8.5
OH 13.5 0.8 [0.4, 1.8] 0.9
OK 1.4 1.0 [0.7, 1.4] 1.0
OR 5.4 0.4 [0.2, 1.0] 0.5
PA 21.3 2.7 [1.3, 5.7] 2.4
RI* 42.3 4.2 [2.0, 8.9] 2.4
SC** 19.9 0.7 [0.3, 1.5] 1.0
SD 12.9 1.1 [0.5, 2.3] 0.8
TN 6.1 0.9 [0.4, 2.0] 0.9
TX 30.0 0.9 [0.4, 2.0] 0.6
UT 5.0 0.5 [0.3, 1.1] 0.7
VA 11.0 1.3 [0.6, 2.7] 0.9
VT 6.5 1.0 [0.4, 2.1] 1.4
WA* 11.4 1.3 [0.6, 2.7] 1.4
WI 6.6 0.7 [0.3, 1.4] 0.9
WV 3.2 0.7 [0.3, 1.6] 0.4
WY 7.9 0.3 [0.1, 0.6] 0.7

Notes: Column (2) reports the estimates for population prevalence of COVID-19 based on the
methodology described in Section 2. Column (3) reports 95% confidence intervals for the estimates
based on heteroskedasticity robust standard errors. Column (4) reports the average estimates for
population prevalence of COVID-19 from March 31 to April 7, 2020. In cases of incomplete testing
data on April 7, state population prevalence is reported for the closest day: * indicates prevalence
on April 6, ** indicates prevalence on April 5, and *** indicates prevalence on March 31.
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Table 2: Robustness Exercises

Estimated COVID-19 Prevalence Estimated COVID-19 Prevalence
on April 7 Average: March 31 - April 7

Baseline Add state Restrict to Baseline Add state Restrict to
estimates fixed effects days w. < 50% estimates fixed days w. <

positive cases effects 50% pos.
Estimate 95% CI Estimate 95% CI Estimate 95% CI cases

(1) (2) (3) (4) (5) (6) (7) (8) (9)
AK 0.9 [0.5, 1.8] 1.0 [0.6, 1.6] 0.4 0.5 0.3
AL* 1.0 [0.5, 2.1] 1.0 [0.6, 1.8] 0.8 [0.4, 1.9] 0.9 0.9 0.8
AR 0.7 [0.3, 1.5] 0.7 [0.4, 1.3] 0.6 [0.3, 1.3] 0.5 0.6 0.5
AZ 0.4 [0.2, 0.9] 0.5 [0.3, 0.8] 0.4 [0.2, 0.9] 0.6 0.6 0.5
CA 1.1 [0.5, 2.3] 1.1 [0.7, 2.0] 0.9 [0.4, 2.1] 0.9 0.9 0.8
CO 1.1 [0.5, 2.4] 1.2 [0.7, 2.1] 0.9 [0.4, 2.2] 1.8 1.9 1.5
CT 5.0 [2.4, 10.6] 5.2 [3.0, 9.1] 4.2 [1.8, 9.5] 4.2 4.3 3.1
DC 3.8 [1.8, 7.9] 3.9 [2.3, 6.7] 3.2 [1.4, 7.0] 3.0 3.1 2.4
DE** 1.9 [0.9, 3.9] 2.0 [1.1, 3.4] 1.6 [0.7, 3.5] 1.5 1.6 1.3
FL 1.3 [0.6, 2.8] 1.4 [0.8, 2.4] 1.1 [0.5, 2.5] 1.3 1.3 1.1
GA 4.2 [1.9, 9.1] 4.3 [2.5, 7.7] 2.0 2.1 1.4
HI* 0.4 [0.2, 0.8] 0.4 [0.2, 0.7] 0.3 [0.1, 0.7] 0.4 0.5 0.4
IA 0.9 [0.4, 1.9] 0.9 [0.5, 1.6] 0.8 [0.3, 1.7] 0.7 0.7 0.6
ID 1.1 [0.5, 2.3] 1.1 [0.6, 2.0] 0.9 [0.4, 2.1] 1.5 1.6 1.3
IL 2.6 [1.2, 5.3] 2.7 [1.6, 4.6] 2.1 [1.0, 4.8] 2.3 2.4 1.9
IN 2.3 [1.1, 4.8] 2.4 [1.4, 4.1] 1.9 [0.8, 4.3] 1.9 2.0 1.6
KS 0.5 [0.2, 1.1] 0.5 [0.3, 1.0] 0.4 [0.2, 1.0] 0.7 0.7 0.6
KY 0.3 [0.2, 0.8] 0.4 [0.2, 0.6] 0.3 [0.1, 0.7] 0.4 0.4 0.3
LA 5.7 [2.5, 12.9] 5.9 [3.2, 10.8] 4.6 [1.9, 11.3] 6.7 6.9 5.0
MA 3.9 [1.8, 8.3] 4.0 [2.3, 7.1] 3.2 [1.4, 7.3] 3.4 3.6 2.8
MD 1.5 [0.7, 3.3] 1.6 [0.9, 2.8] 1.3 [0.6, 2.9] 1.7 1.8 1.4
ME*** 0.5 [0.3, 0.9] 0.5 [0.4, 0.8] 0.5 [0.2, 0.9] 0.5 0.5 0.5
MI 5.1 [2.4, 10.8] 5.3 [3.0, 9.2] 4.4 4.6 3.2
MN 0.4 [0.2, 0.9] 0.4 [0.3, 0.8] 0.4 [0.2, 0.8] 0.3 0.3 0.3
MO 1.4 [0.7, 3.1] 1.5 [0.9, 2.6] 1.2 [0.5, 2.7] 1.1 1.2 0.9
MS* 0.7 [0.7, 0.8] 0.7 [0.7, 0.8] 0.7 [0.7, 0.8] 1.1 1.1 0.9
MT 0.5 [0.2, 1.2] 0.6 [0.3, 1.0] 0.5 [0.2, 1.1] 0.5 0.5 0.4
NC 1.1 [0.6, 2.2] 1.2 0.7, 1.9 0.6 0.7 0.5
ND 0.3 [0.2, 0.7] 0.3 [0.2, 0.6] 0.3 [0.1, 0.6] 0.5 0.5 0.4
NE 0.6 [0.3, 1.3] 0.6 [0.3, 1.1] 0.5 [0.2, 1.1] 0.6 0.6 0.5
NH 1.0 [0.5, 2.1] 1.0 [0.6, 1.8] 0.8 [0.4, 1.9] 1.2 1.3 1.0
NJ 7.6 [3.6, 16.1] 7.9 [4.5, 13.8] 7.6 7.9 6.0
NM 0.6 [0.3, 1.3] 0.6 [0.3, 1.1] 0.5 [0.2, 1.1] 0.7 0.7 0.5
NV 1.2 [0.6, 2.6] 1.3 [0.7, 2.2] 1.0 [0.5, 2.4] 1.2 1.2 1.0
NY 7.5 [3.3, 17.1] 7.9 [4.3, 14.4] 6.2 [2.6, 14.9] 8.5 8.8 7.0
OH 0.8 [0.4, 1.8] 0.9 [0.5, 1.5] 0.7 [0.3, 1.6] 0.9 0.9 0.7
OK 1.0 [0.7, 1.4] 1.0 [0.8, 1.3] 0.9 [0.6, 1.4] 1.0 1.0 0.9
OR 0.4 [0.2, 1.0] 0.5 [0.3, 0.8] 0.4 [0.2, 0.9] 0.5 0.5 0.4
PA 2.7 [1.3, 5.7] 2.8 [1.6, 4.9] 2.3 [1.0, 5.1] 2.4 2.5 2.0
RI* 4.2 [2.0, 8.9] 4.4 [2.5, 7.6] 3.5 [1.6, 8.0] 2.4 2.5 2.0
SC** 0.7 [0.3, 1.5] 0.7 [0.4, 1.3] 0.6 [0.3, 1.4] 1.0 1.0 0.9
SD 1.1 [0.5, 2.3] 1.1 [0.6, 1.9] 0.9 [0.4, 2.0] 0.8 0.8 0.7
TN 0.9 [0.4, 2.0] 1.0 [0.5, 1.7] 0.8 [0.3, 1.8] 0.9 1.0 0.8
TX 0.9 [0.4, 2.0] 1.0 [0.5, 1.7] 0.8 [0.3, 1.8] 0.6 0.7 0.6
UT 0.5 [0.3, 1.1] 0.6 [0.3, 1.0] 0.4 [0.2, 1.0] 0.7 0.7 0.6
VA 1.3 [0.6, 2.7] 1.4 [0.8, 2.3] 1.1 [0.5, 2.4] 0.9 1.0 0.8
VT 1.0 [0.4, 2.1] 1.0 [0.6, 1.8] 0.8 [0.3, 1.8] 1.4 1.5 1.2
WA* 1.3 [0.6, 2.7] 1.4 [0.8, 2.3] 1.1 [0.5, 2.4] 1.4 1.4 1.1
WI 0.7 [0.3, 1.4] 0.7 [0.4, 1.2] 0.6 [0.2, 1.3] 0.9 0.9 0.7
WV 0.7 [0.3, 1.6] 0.7 [0.4, 1.3] 0.6 [0.2, 1.4] 0.4 0.4 0.4
WY 0.3 [0.1, 0.6] 0.3 [0.2, 0.5] 0.2 [0.1, 0.6] 0.7 0.7 0.6

Notes: Columns (1) to (6) report the estimates and heteroskedasticity robust 95% confidence intervals for population prevalence
of COVID-19 on April 7 based on the methodology described in Section 2. Columns (7) to (9) report the the average estimates
for population prevalence of COVID-19 from March 31 to April 7. Columns (3), (4) and (8) report results based on models that
include state fixed effects. Columns (5), (6), and (9) report results based on models that restrict the sample to observations
for which the share of positive cases was less than 0.5. In cases of incomplete testing data on April 7, population prevalence is
reported for the closest day: * indicates prevalence on April 6, ** indicates prevalence on April 5, and *** indicates prevalence
on March 31.



Table 3: Estimated Population COVID-19 Prevalence and Serological Testing

COVID-19 Prevalence (%)
Serological State-level State-level
test results estimate, estimate,

April 11 adjusted for
Location pop. density

(1) (2 ) (3)

Los Angeles county, CA 4.1 1.1 1.6

Santa Clara county, CA 2.5-4.2 1.1 1.4

San Miguel county, CO 0.8-3 1.1 1.1

Presbyterian Allen Hospital & 15.3 7.5 8.6
Columbia Irving Medical Center, NY

Chelsea, Suffolk county, MA 31.5 3.9 4.9

Notes: Column (1) reports the estimated prevalence from serological tests. Prevalence estimates
for Los Angeles and Santa Clara counties were derived from samples of 846 and 3,330 participants
recruited through Facebook ads, with estimates adjusted for zip code, sex, and race/ethnicity. Preva-
lence estimates for San Miguel county were derived from a sample of 986 tests. Prevalence estimates
for NY were based on PCR tests for current infection among all pregnant women who delivered from
March 22 to April 4. Estimates for Chelsea were based on serological tests collected on the street
corner for 200 residents. Column (2) reports the state-level prevalence estimates from Table 1 (col.
2). Column (3) reports the state-level estimated adjusted to match the population density of the
county in which serological testing was conducted.
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Table 4: Diagnosed Cases and Estimated Total Cases of COVID-19

State Positive Estimated Total Ratio of Total Cases COVID-19 Tests
COVID-19 Tests, COVID-19 Cases to Positive Tests per 1,000

by April 12 (2)/(1) Population

(1) (2) (3) (4)
AK 272 3,177 11.7 11.0
AL 3,525 44,155 12.5 4.4
AR 1,280 16,460 12.9 6.5
AZ 3,539 45,434 12.8 5.8
CA 21,794 353,000 16.2 4.8
CO 6,893 106,505 15.5 6.1
CT 12,035 148,252 12.3 11.6
DC 1,875 20,843 11.1 15.1
DE 1,479 14,779 10.0 11.4
FL 19,355 274,117 14.2 8.5
GA 12,452 215,306 17.3 5.1
HI 486 6,179 12.7 12.7
IA 1,587 22,678 14.3 5.6
ID 1,407 27,105 19.3 8.0
IL 20,852 287,087 13.8 7.9
IN 7,928 128,568 16.2 6.3
KS 1,337 19,110 14.3 4.5
KY 1,840 18,328 10.0 5.5
LA 20,595 310,465 15.1 22.4
MA 25,475 236,752 9.3 16.8
MD 8,225 102,114 12.4 8.2
ME 633 7,165 11.3 5.0
MI 24,638 441,486 17.9 8.0
MN 1,621 18,007 11.1 6.6
MO 4,160 69,549 16.7 7.4
MS 2,781 32,330 11.6 7.2
MT 387 5,138 13.3 8.3
NC 4,520 66,830 14.8 5.9
ND 308 3,507 11.4 13.6
NE 791 10,821 13.7 5.5
NH 929 16,792 18.1 8.0
NJ 61,850 672,314 10.9 14.3
NM 1,174 13,696 11.7 13.7
NV 2,836 36,864 13.0 8.0
NY 188,694 1,644,119 8.7 23.7
OH 6,604 100,221 15.2 5.4
OK 1,970 38,186 19.4 5.8
OR 1,527 21,994 14.4 7.1
PA 22,833 302,535 13.2 9.8
RI 2,665 25,081 9.4 19.2
SC 3,319 51,737 15.6 6.1
SD 730 7,205 9.9 9.7
TN 5,308 64,366 12.1 10.3
TX 13,484 187,963 13.9 4.3
UT 2,303 22,403 9.7 13.8
VA 5,274 80,574 15.3 4.7
VT 727 8,867 12.2 15.8
WA 10,224 103,188 10.1 12.3
WI 3,341 50,662 15.2 6.7
WV 611 7,724 12.6 9.1
WY 261 3,921 15.0 9.4

Notes: Columns (1) reports the cumulative number of positive COVID-19 tests by April 12. Col-
umn (2) reports the total number of COVID-19 cases implied by the average estimated population
prevalence from March 31 to April 7 (Table 2, col. 4). Column (4) reports the cumulative number
of COVID-19 tests by April 12 per 1,000 population.
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A Appendix: Tables and Figures

Table A.1: Coefficient Estimates from Equation (4)

Model 1 Model 2 Model 3

α1 11.1222 10.8495 11.8478
(1.9803) (1.448) (2.1104)

α2 -21.6322 -21.0819 -22.6333
(3.765) (2.754) (3.8998)

α3 15.6053 15.2766 15.8989
(2.1573) (1.5794) (2.1975)

β -1330.7719 -1336.3753 -1242.6423
(167.8049) (126.3258) (157.7954)

σu 0.48136 0.4773 0.47424
(0.017984) (0.01261) (0.01837)

State fixed effects Yes

Restrict to days with Yes
< 50% positive cases

Observations 360 360 335

Notes: This table reports the estimation of the coefficients from Equation (4).
Model 1 presents the baseline results for the full sample. Model 2 reports
the results with additional state fixed effects controls. Model 3 restricts the
sample to observations for which the share of positive cases was less than 0.5.
Heteroskedasticity robust standard errors are reported in parentheses.
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